Will Peltier Modules Replace Compressors in Thermoeletric Cooling Technology?

2022-06-09 06:38:17 By : Mr. William Wang

We use cookies to enhance your experience. By continuing to browse this site you agree to our use of cookies. More info.

The thermocouple is the smallest part of a thermal element, consisting of two electrical conductors that have very different Seebeck coefficients to produce the maximum thermoelectric voltage possible. Semiconductor blocks are typically used and are linked at the ends with copper. Hitherto, bismuth telluride in n- and p-doping is the most suitable material for ambient temperature applications (Figure 1).

Peltier elements are thermoelectric components capable of pumping heat from one end of the device to the other end based on the direction of current. An advanced Peltier element comprises several thermocouples that are electrically connected by copper bridges in series (Figure 2). Ceramic plates made of aluminum oxide are used to thermally bond the copper bridges. However, the copper bridges are electrically separated from each other.

Thermally coupled heat sinks and Peltier elements are the components of a Peltier module (Figure 3). The electric energy applied to pump is irreversibly transformed into heat in the Peltier elements, and requires effective dissipation. Moreover, heat generated is reversibly pumped by the Peltier elements from one side to the other based on the direction of the current flow. This leads to the absorption of heat on one side, but the amount of heat absorbed is much lower than the amount of heat released on the other side. Consequently, heat transfer must be taken place across large-sized heat sinks line on each side of the Peltier element. The heated or cooled air is diverted with the help of powerful fans.

Pulse width modulation involving control of the average current by the length of high frequency current pulses is used to control Peltier elements. Another commonly used method is voltage regulation. However, simple on-off control is recommended due to the possibility of reduced component life caused by the heavy load on the Peltier element. Peltier modules can be regulated by reversing the direction of the current, but reversing the polarity prior to equalizing the temperature in the Peltier element will expose the Peltier element to enormous thermal stress.

The following are the advantages of Peltier elements:

The following are the drawbacks of Peltier elements:

Thermoelectric cooling technology is applied in areas requiring low level cooling and where energy efficiency is not a priority or using compressors is not feasible due to their size. Peltier-based coolers are ideal for campers or cars for active cooling of beverages and foods, thanks to their portability and option of directly plugging into a 12V electrical system.

Thermocycler used for multiplying DNA sequences employs Peltier temperature control to achieve three different reaction temperatures in quick succession for this polymerase chain reaction. Due to their small size, Peltier elements can be used to cool scintillators in order to reduce the noise of the photodiodes. Unlike compressors whose operation relies on their position, Peltier modules are used to construct battery-operated mobile devices, such as refractometers, rheometers, viscometers, and density meters.

Since the amount of heat dissipated by Peltier elements is more than the amount that they can pump, they can be used to cool computer processors to a temperature below ambient temperature. Multistage Peltier modules are used in dew point mirror hygrometers and IR sensors, thanks to their ability to create a temperature difference of over 100k. Peltier technology is also suitable for heating and cooling of diffusion cloud chambers involved in the detection of particles such as positrons, electrons, and alpha radiation.

Peltier technology is also used in the cooled incubators involving incubation at or around ambient temperature (15 - 30°C), or in areas involving heat input, eliminating the technical complexity and drawbacks of a compressor system.

Peltier technology paves the way for special applications, where maximum energy efficiency or cooling power is not required. It is scalable and location independent, facilitating the development of tiny or portable systems. Cooling capacity can be finely metered with the help of Peltier modules, providing efficient temperature control at lower temperature gradients. However, the inefficiency of Peltier technology makes it inferior to compressors in applications like household refrigerators and freezers.

This information has been sourced, reviewed and adapted from materials provided by BINDER GmbH.

For more information on this source, please visit BINDER GmbH.

Please use one of the following formats to cite this article in your essay, paper or report:

BINDER GmbH. (2019, May 03). Will Peltier Modules Replace Compressors in Thermoeletric Cooling Technology?. AZoM. Retrieved on June 09, 2022 from https://www.azom.com/article.aspx?ArticleID=11389.

BINDER GmbH. "Will Peltier Modules Replace Compressors in Thermoeletric Cooling Technology?". AZoM. 09 June 2022. <https://www.azom.com/article.aspx?ArticleID=11389>.

BINDER GmbH. "Will Peltier Modules Replace Compressors in Thermoeletric Cooling Technology?". AZoM. https://www.azom.com/article.aspx?ArticleID=11389. (accessed June 09, 2022).

BINDER GmbH. 2019. Will Peltier Modules Replace Compressors in Thermoeletric Cooling Technology?. AZoM, viewed 09 June 2022, https://www.azom.com/article.aspx?ArticleID=11389.

Do you have a review, update or anything you would like to add to this article?

In this interview, AZoM talks to Chris Aylott, Senior Engineer at Newcastle University, about fatigue testing in the development of low carbon transport solutions.

AZoM speaks with Dr. Nicola Ferralis from MIT about his research that has developed a low-cost process of creating carbon fibers from hydrocarbon pitch. This research could lead to the large-scale use of carbon fiber composites in industries that have thus far been limited.

In this interview, AZoM speaks with Marco Enger, Senior Tribologist from GGB, to discuss how nano fillers affect transfer films within tribological systems.

Learn more about the JAM-5200EBM E-Beam Metal Additive Manufacturing System for 3D Printing.

This product profile outlines the features and benefits of the Contour X - 500 3D Optical Profilometer.

The Turbiscan Tri-Lab from Formulaction allows for multisample macroscopic and colloidal stability analysis.

This article provides an end-of-life assessment of lithium-ion batteries, focusing on the recycling of an ever-growing amount of spent Li-Ion batteries in order to work toward a sustainable and circular approach to battery use and reuse.

Corrosion is the degradation of an alloy caused by its exposure to the environment. Corrosion deterioration of metallic alloys exposed to the atmosphere or other adverse conditions is prevented using a variety of techniques.

Due to the ever-increasing demand for energy, the demand for nuclear fuel has also increased, which has further created a significant increase in the requirement for post-irradiation examination (PIE) techniques.

AZoM.com - An AZoNetwork Site

Owned and operated by AZoNetwork, © 2000-2022